INTEL WIRELESS
Wired Stuff
WiFi Tablet Corner
My80211 White Papers (Coming Soon!)

Cisco Wireless Compatibility Matrix (Nov. 2011)

Archives - Did you know?
Podcasts / Videos

My80211 Videos

Cisco: 802 11 frames with Cisco VIP George Stefanick

Fluke Networks: Minimize Wi Fi Network Downtime

Aruba: Packets never lie: An in-depth overview of 802.11 frames

ATM15 Ten Talk “Wifi drivers and devices”

Houston Methodist Innovates with Wireless Technology

Bruce Frederick Antennas (1/2)

 

Bruce Frederick dB,dBi,dBd (2/2)

Cisco AP Group Nugget

Social Links
Revolution WiFi Capacity Planner

Anchor / Office Extends Ports

 

Peek Inside Cisco's Gear

See inside Cisco's latest wireless gear!

2.4 GHz Channel Overlap

EXAMPLE 1  

EXAMPLE 2

EXAMPLE 3  

CWSP RELEASE DATE 2/08/2010
  • CWSP Certified Wireless Security Professional Official Study Guide: Exam PW0-204
    CWSP Certified Wireless Security Professional Official Study Guide: Exam PW0-204
    by David D. Coleman, David A. Westcott, Bryan E. Harkins, Shawn M. Jackman

    Shawn Jackman (Jack) CWNE#54 is a personal friend and has been a mentor to me for many years.  I've had the pleasure and opportunity to work with Jack for 4 years. Jack is a great teacher who takes complex 802.11 standards and breaks them down so almost anyone can understand the concept at hand. I'm excited for you brother. Great job and job well done! Put another notch in the belt!

IEEE 802.11a/g/n Reference Sheet

 

LWAPP QoS Packet Tagging

 

 

Interference Types

BLUETOOTH
 

Microwave Oven
 

Cordless Phone

JAMMER!
 

« Cisco Visio Stencils | Main | IEEE 802.11n Standard Available for download »
Saturday
Jun262010

Atheros sampling 450Mbps 802.11n Wi-Fi chipset

  

This is by John Cox from Network World. 

http://www.networkworld.com/news/2010/060210-atheros-wifi-chipset.html?page=1

Chip maker Atheros Wednesday released samples of its powerful new 802.11n Wi-Fi chipset, which tops out with a maximum data rate of 450Mbps for access points and routers, and a signal that's more consistent and resilient.

The 11n standard uses several innovations to boost data rate and throughput, and to maintain those higher levels consistently over longer distances compared to 802.11abg radios.

Like earlier Atheros 11n silicon, the new AR938x and AR9390 chipsets also have three antennas, part of a technology called multiple input multiple output (MIMO). With multiple antennas tuned to the same channel, the radio uses spectrum more efficiently, increasing overall performance. In addition, with multiple antennas on both ends of the send-receive chain, MIMO systems can recombine reflected signals to enhance them (otherwise these multipath reflections typically disrupt the signal).

Another part of the 11n innovation is using what are called multiple spatial streams, or distinct, separately encoded signals within a single spectral channel. Think of it as sending data in parallel: a lot more data in a given time or a given amount of data in much less time. The impact of multiple antennas and spatial streams is also affected by other optional techniques the vendor may implement. 

In the past, Atheros and most other Wi-Fi chip vendors have had at best a three-antenna configuration with two spatial streams, for a maximum data rate of 300Mbps. The new chips are Atheros' first to use three spatial streams, one for each antenna pair, boosting the rate to 400Mbps.

Atheros will offer the new 3x3 chipsets at a "similar price range" to the previous generation chipset, says Tony Hsu, senior director of product marketing for Atheros' networking business unit.

A couple of vendors are offering 4x4 MIMO radios. Quantenna Communications has such a product in trials with a dozen carriers, aiming at multi-media applications within a home. It's a development that emphatically makes sense, says Network World blogger Craig Mathias

The new products also include a range of 802.11n options, including transmit beam forming, which can be thought of as narrowing and focusing the radio signal to increase its range and decrease the impact of interference. Other techniques are Low Density Parity Check for much more efficient error-correction coding, and Maximum Likelihood equalization algorithms to demodulate the received signal with much greater accuracy than other methods.

Adding these techniques to a three-spatial stream chipset results in 50% greater range or up to 66% higher effective bandwidth, depending on the specific operating conditions, according to Atheros.

Apart from the raw increase in data rate and range, these kinds of advances also mean an improved radio environment for video and other streaming media. According to Atheros, its new 11n silicon can slow down the top data rate to reduce packet loss and latency, thus improving the quality of the video transmission. Other algorithms search for unused radio channels for the video stream. Atheros says the chipsets can support three simultaneous high-definition video streams.

The chipsets are available in sample quantities with full production due to ramp up in the third quarter.

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.

PostPost a New Comment

Enter your information below to add a new comment.

My response is on my own website »
Author Email (optional):
Author URL (optional):
Post:
 
Some HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <code> <em> <i> <strike> <strong>