What is Time-Domain Reflectometer (TDR)?
“A time-domain reflectometer (TDR) is an electronic instrument used to characterize and locate faults in metallic cables (for example, twisted wire pairs, coaxial cables)1.”
For the sake of this document, “TDR testing” and “TDR” are used interchangeably in this document to sow confusion to the un-initiated. They both mean the same.
How can TDR help me?
TDR, in its simplest form, can help you determine IF you have a cable problem, WHICH pair(s) is/are faulty and HOW FAR away the fault is.
Typically, when you have a Layer 1 issue there are a lot of factors to consider:
So you see, dear readers, TDR minimize the guess-work.
Picture this …
Before we begin, let me give you the “lay of the land”. Presume the following scenario:
What model of Cisco switch does TDR work on?
Firstly, not all switch model support TDR. TDR feature first came out with the Catalyst 2960. So here is the list of which ones will work and will not:
Model |
TDR Support |
2960 |
Yes1, 2 |
2960G |
Yes |
2960S |
Yes |
2918 |
Unknown |
2350 |
Unknown |
2360 |
Unknown |
2975 |
Unknown |
3560 |
No |
3560G |
Yes |
3560E/3560X |
Yes |
3750 |
No |
3750G |
Yes |
3750E/3750X |
Yes |
Nexus 2K |
Unknown |
Nexus 5K |
Unknown |
Nexus 7K |
Yes3 |
Note:
1. The 2960 will support TDR in both the FastEthernet and dual-personality GigiabitEthernet port, however, when used on a FastEthernet port, TDR will only test the first two pairs, namely Pairs A & B. For obvious reasons, Pairs C and D will not be tested when used on non-GigabitEthernet ports.
2. Except the WS-C2960-48PDL, when using the copper GigabitEthernet port of the Catalyst 2960, one must manually set the interface to copper using the command “media rj” before the test can be conducted.
3. Confirmed by Cisco TAC, Ankur Garg.
The list does not include modules/blades for the Catalyst 4000/4500, 5000/5500, 6000/6500 although it is mentioned here that TDR was introduced with IOS Release 12.2 ZY for the Catalyst 6000/6500. It’s not included in the list above because I don’t have the resources to test and verify.
Legacy Cisco Catalyst models 1900, 2900XL/3500XL, 2940/2950/2955, 2948G and 2970 are not supported. Routers are also not supported. I do not have any resources to test router Ethernet Switch Modules (NME, HWIC, EHWIC). Wireless Access Points do not support TDR.
Why doesn’t the FastEthernet-flavoured 3560 and 3750 support TDR and but the cheaper FastEthernet 2960 support TDR?
Base on the time-line, the “plain” (or non-GigabitEthernet copper port) 3560 and 3750 came out BEFORE the 2960. The “chip” for the TDR was included in the design of the 2960. When Cisco released the 3560G and 3750G later, someone made the ultimate decision to include the TDR feature as a standard. Therefore, the plain 3560 and 3750 are the only two series that WON’T HAVE the TDR feature. (Take note reader: Emphasis on the words “WON’T HAVE”)
Any Gotchas I need to be aware of?
The next two Gotcha items are for those who plan to use the TDR feature on Cisco Catalyst 2960 and 2960G (2960S not included):
How to use TDR?
The commands are very simple: One to start the test and the second command to display the result. Here is simple procedure:
See? Easy! Now let’s see what the I results would look like.
Interface |
Speed |
Local pair |
Pair length |
Remote pair |
Pair status |
Gi0/1 |
1000M |
Pair A |
3 +/- 1 meters |
Pair A |
Normal |
Pair B |
3 +/- 1 meters |
Pair B |
Normal |
||
Pair C |
3 +/- 1 meters |
Pair C |
Normal |
||
Pair D |
3 +/- 1 meters |
Pair D |
Normal |
So what does this result above tell us?
Under “Pair status” you can get the following results:
Result |
Explaination |
Normal |
Ideal result you want.
|
Open |
Open circuit. This means that one (or more) pair has “no pin contact”. |
Short |
Short circuit. |
Impedance Mismatched |
Bad cable. For more explanation, go here. |
An ideal result is “Normal”. In practice, whether the remote-end device is FastEthernet or GigabitEthernet, I will never accept a TDR result other than “Normal” in all four pairs.
Cable Pairs explained?
This is how I see what each Pairs control:
Pairs |
Function |
A |
This pair controls whether or not the port should go up or not. |
B |
Protocol-level and controls FastEthernet. |
C |
Power over Ethernet (PoE) |
D |
GigabitEthernet |
More examples
Interface |
Speed |
Local pair |
Pair length |
Remote pair |
Pair status |
Gi0/11 |
100M |
Pair A |
13 +/- 1 meters |
Pair B |
Normal |
Pair B |
12 +/- 1 meters |
Pair A |
Normal |
||
Pair C |
0 +/- 1 meters |
Pair D |
Open |
||
Pair D |
0 +/- 1 meters |
Pair C |
Open |
Normally, this result would freak me out. Look at the items in RED. Pairs C and D are reporting a cable value of “0”. Next I move to the “Pair status” and it’s reported as an Open circuit. No pin contact. Whao! But look at the speed. It’s 100 Mbps. So it’s normal … I guess.
But wait. What if the remote-end side (Red) client is a GigabitEthernet. So where is the faulty cabling? Which one of the patch cables? Or is it a horizontal cabling? Does the client support GigabitEthernet or not?
Here’s another clue: Look at the length of the cable for Pair A and B. It’s reporting around 12 to 13 metres. Experience has taught me that my Local-end Side (LeS) cable doesn’t exceed two metres. So that rules out my cable, however the horizontal cabling is more than 10 metres. So what’s between the horizontal cabling and the remote-end client? You have three suspects: 1) The remote-end punch block; 2) the remote-end patch cable; and 3) remote-end client.
Culprit was the remote-end punch block and the horizontal cabling: Cable contractors only terminated two pairs.
Never ask a boy to do a man’s job!
Interface |
Speed |
Local pair |
Pair length |
Remote pair |
Pair status |
Gi1/0/48 |
auto |
Pair A |
149 +/- 1 meters |
Pair B |
Normal |
Pair B |
151 +/- 1 meters |
Pair A |
Normal |
||
Pair C |
35 +/- 1 meters |
Pair D |
Short/Impedance Mism |
||
Pair D |
21 +/- 1 meters |
Pair C |
Short/Impedance Mism |
Its results like the ones above that makes me want to cry.
Ok, I look under “Pair status” and I see “Short/Impedance Mism” for Pair C and D. No question about it. It’s bad cabling. This is not what makes me want to cry. Look at under “Pair length” of Pair A and B. NOW cry.
Should I be worried?
Interface |
Speed |
Local pair |
Pair length |
Remote pair |
Pair status |
Fa0/39 |
100M |
Pair A |
6 +/- 1 meters |
N/A |
Open |
Pair B |
49 +/- 1 meters |
N/A |
Open |
||
Pair C |
N/A |
N/A |
Not Supported |
||
Pair D |
N/A |
N/A |
Not Supported |
Looking at the result, I can confidently say that the appliance was a 48-port Cisco Catalyst 2960. How? Look under “Interface”. Look at “Pair status” for Pair C and D. Only the plain 2960 FastEthernet ports can support TDR.
But look at “Pair status” for Pairs A and B. What does that mean?
It means that the remote-end (Red) patch cable is missing.